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Summary 

Obtaining an analytical expression for the axial density profile can provide us 
with a quick and convenient way to evaluate the density evolution for targets with 
different densities and dimensions. In this note, we show that such an analytical 
expression can be obtained based on the self-similar solutions and the method of 
characteristics for 1 -D slab expansion. 

Introduction 

For a slab target inside a tube, the expansion is 1-D along the axis if the electron 
energy deposition on the target is uniform in the radial direction and if the target is not 
very thick. Then, to the lowest order of approximation, the energy deposition can be 
assumed to be uniform in the axial direction. Under these conditions, an analytical 
expression for the temporal evolution of the axial density profile can be obtained. The 
schematics of the density profile evolution for such slab target expansion is shown in Fig. 
1. 

‘The initial configuration of the slab has a thickness of 2L and has density p. as 
shown in Fig. la. Here, we assume that temperature of the slab is raised to its final value 
Tr instantaneously. If the slab is composed of an ideal gas with y = 93, then the front and 
back surfaces of the slab have an expansion velocity of 3co [Ref. 11, where co is the sonic 
velocity corresponding to the slab at p. and Tf, see Fig. lb, These surfaces expanding 
at 3co are referred to as the “tails” of the rarefaction wave. Meanwhile, the “heads” of the 
rarefaction waves are moving into the interior region of the slab at co. At time t = L/c,, the 
heads of the rarefaction wave meet at the center of the slab as shown in Fig. lc. For t > 
L/c,, the heads of the rarefaction waves have passed each other and the overlapping 
region is called the “nonsimple wave region” as shown in Fig. Id. The regions where the 
waves do not overlap each other are called “simple wave region”. 

In the simple wave region, the analytical solution for the evolution of the fluid 
variables are well known and are available in many text books of fluid mechanics [Refs. 
1 - 31. However, there are no analytical solutions for the fluid variables in the nonsimple 
wave region. The primary objective for this note is to derive an approximate, but 
accurate, analytical solution in the nonsimple wave region. 



Derivation of the approximation solution for the nonsirnple wave region 

In order to derive the approximation solution for the nonsimple wave region, we 
need to look at the behavior of the characteristics of an expanding slab as shown in Fig. 
2. Only the left-hand-half of the slab is shown here. For I > to = L/c, or c,t/L > 1, the 
characteristics launched tobvard the interior of the slab from the surfaces on the left- and 
right-hand side overlap and form the nonsimple wave region. (Note that Fig.2 is for the 
expansion of a slab of ideal gas with y = 2. Based on this figure, the approximation that 
we use for the nonsimple wave region, as discussed later in this section, applies to ideal 
gas with y = .5/3 as Lvell.) 

The self-similar solutions that describe the density p and axial velocity v in the 
simple wave region are: 
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Curve ab in Fig. 2 is the boundary that separates the simple and nonsimple wave 
regions. The expression that describes this boundary as a function of time t has the form 
[Ref. 3, p. 391. But be careful, the equation given in Ref. 3 has an error!] 
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Combining Eqs. (1) and (3) gives the density pb along the boundary. 

Pb = /%t- ’ 

where 5 = c,t/L = t/to. 

(3) 

(4) 

Combing Eqs. (2) and (3) gives the expression for the fluid velocity vb along the 
boundary, 
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Inspection of the characteristics in the nonsimple region shows that the 
characteristics can be approximated by straight l ines as long as c,t/L is not substantially 
greater than unity. This implies that v  vs z  is also a  straight line in the nonsimple wave 
region (see Fig. 3) e.g. 

v(z, t> Vb(Zb,t)z -zz 

Substitute Eqs. (3) and (5) into the above expression, we obtain 
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To obtain the density as a  function of z  and t, we need to substitute Eq. (7) into 
momentum equation 
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To relate p  and the pressure I?, we combine the expression for the sonic velocity c2 = yP/p 
and the adiabatic relation P = const. p’ and obtain 
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Taking the derivative, Eq. (9) becomes 
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Substitute Eqs. (7) and (10) into Eq. (8) and integrating from an arbitrary location z 
inside the nonsimple wave region to the boundary zb, the individual terms in the 
momentum equation become 
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(12) 

Adding Eqs. (11) and (12) and then equate the sum to Eq. (13) the expression for the 
density p as a function of z and t in the nonsimple wave region can then be obtained and 
has the form 
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The accuracy of this expression can be checked by comparing the total charge 
inside the nonsimple-wave region calculated by Eq. (16) to the result obtained by 
subtracting the charge in the simple-wave region obtained from Eq. (1) from the total 
charge. This shows excellent agreement; e.g., at t = 2t,, the agreement is within 1%. 
Another way to verify the accuracy of Eq. (16) is by substituting this expression into the 
continunity equation. We find that the cancellation between the @YZQ term and the 
(Bz)(vp) terms in the continunity equation is within 3% of the apGt term at z = 0 and t = 
2t+ The shape of the density profile described by Eq. (16) is also in close agreement with 
that obtained from PIC simulations (Ref. 4). However, the errors resulting from the 
approximate solutions increase with time. For example, at t = 3b, the value of the charge 
inside the nonsimple-wave region obtained from the approximate formula differs from 
the actual value by about 2%. This suggest that Eq. (16) is able to approximate the beam 
density profile with good accuracy at least up to t = 3t+ 

Numerical examples 

We study the expansion of slab targets inside a tube with different initial densities 
but with the same mass and the same input energy. The energy is assumed to be 
deposited instantaneously. Here, the sonic velocity is independent of the initial density of 
the slabs since the final temperature Tf is independent of the density. The reason that we 
have a slab target inside a tube is because if the beam intensity is radially uniform and if 
the energy deposition is independent of the depth, the expansion is one dimensional in the 
axial direction and Eq. (16) can be applied. 

The first example is a solid target with initial density po and thickness 2L. The 
corresponding sonic velocity is co. At t = 2to, the tail of the rarefaction wave has already 
covered a distance of 6L since the tail of the wave is moving at 3~0. In the central region 
of the slab, the heads of the waves have already passed each other and created the 
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nonsimple wave region. The density profiles in the simple wave region and the nonsimple 
wave region are calculated using Eqs. (1) and (16) respectively. The density profile at 
this time is shown in Fig. 4a. 

The second example is a foamed target with initial density p0/3 and thickness 6L 
since the mass of this target is the same as that of the solid target. Here, we assume that 
the total energy deposition is the same as that of the solid target and the energy is 
distributed uniformly over the entire thickness of 6L. Consequently, the temperature and 
the sonic velocity for this foamed target (before it expands) are the same as those for the 
solid target. At t = 1.33to (and at t = 2to), the tail of the rarefaction wave has covered a 
distance of 4L (6L) and the head of the rarefaction has traveled a distance of 1.33L ( 
2L) to the right from the original edge of the slab at -3L. Since the heads of the 
rarefaction waves launched from the left and right edges of the slab have not met at the 
center at this time, the entire density profile consists of simple wave region and the 
undisturbed region at the center. The densitv profiles at t = 1.33to and t = 2to are shown in 
Figs. 4b and 4c, respectively. 

The examples illustrated in Fig. 4 shown us that in comparing the plasma 
expansion of the solid and foamed targets, it is important to specify the criteri0.n for 
comparison. For example, if we compare the distance traveled by the tail of the 
rarefaction wave from the center of the slab for the two cases, then the tail of the wave at 
anytime is further away from the center of the slab for the foamed target than the solid 
target. However, if we want to compare the plasma densities at a specified distance from 
the edge of the targets, then the solid target gives a higher plasma density than the 
foamed target at any given time. This is simply because the solid target has a higher 
initial density than the foamed target. 

Conclusion 

,We have shown that the analytical expression for the axial density profile derived 
in this note is accurate for 1-D slab expansion. Using this expression, one can calculate 
the density evolution quickly. Results obtained from this expression improve our 
understanding of the expansion process. 

Work performed under the auspices of the U.S. Department of Energy 
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 
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Figure Captions 

Fig. 1 Evolution of density profile for a 1 -D slab expansion 

Fig. 2 Characteristics of ideal gas with y = 2 

Fig. 3, Density and velocity vs z 

Fig. 4 Density profiles 
(a) solid target, t = 2to 
(b) foamed target with l/3 solid target density, t = 1.33to 
(c) foamed target with l/3 solid target density, t = 2to 
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